Prof. AGH Krzysztof Wojciechowski z Katedry Chemii Nieorganicznej Wydziału Inżynierii Materiałowej i Ceramiki Akademii Górniczo-Hutniczej w Krakowie wraz z zespołem pracuje nad generatorem, który ma przekształcać ciepło spalin samochodowych na energię elektryczną. Przedsięwzięcie prowadzi do skutecznego oszczędzania energii i jednocześnie ma wpływ na ochronę środowiska naturalnego. Dzięki odzyskowi ciepła odpadowego ze spalin, samochody będą mogły zużywać mniej paliwa, zmniejszy się również zanieczyszczenie środowiska, a kierowcy zaoszczędzą pieniądze.
Efekt Seebecka
Innowacyjne rozwiązanie polega na zastosowaniu w samochodach specjalnych generatorów termoelektrycznych, które wprost przekształcają energię cieplną na energię elektryczną. Prace zespołu pod kierunkiem prof. Krzysztofa Wojciechowskiego bazują na wykorzystaniu zjawiska, które odkrył w XIX wieku niemiecki fizyk Tomasz Seebeck. Wykonał on wtedy swoje słynne doświadczenie polegające na połączeniu ze sobą dwóch elementów wykonanych z różnych metali w obwód elektryczny. Ogrzewanie jednego ze złączy przy jednoczesnym chłodzeniu drugiego złącza spowodowało powstanie niewielkiego napięcia i przepływ prądu elektrycznego. Naukowcy do tej pory korzystają z tego zjawiska nazwanego na cześć jego odkrywcy efektem Seebecka. Elementy termoelektryczne - tzw. termopary można spotkać praktycznie w każdym laboratorium - służą one jako sensory do pomiaru temperatury.
Zespół prof. Wojciechowskiego pracuje nad wykorzystaniem tego zjawiska do efektywnego wytwarzania energii elektrycznej. Elementy do konwersji energii cieplnej mają zwykle kształt płytek i wykonane są ze specjalnych półprzewodnikowych materiałów termoelektrycznych. Wystarczy je jedynie ogrzać, aby powstała użyteczna energia elektryczna. - Zaletą modułów termoelektrycznych jest brak jakichkolwiek części ruchomych. Dlatego są niezwykle trwałe i niezawodne. W dodatku charakteryzują się niewielkimi gabarytami i małą wagą. Z powyższych powodów chętnie wykorzystywane są np. do zasilania w energię sond kosmicznych. Były zainstalowane chociażby w wystrzelonych w kosmos ponad trzydzieści lat temu sondach Voyager 1 i 2, i nadal tam działają - podkreśla prof. Krzysztof Wojciechowski.
Materiały termoelektryczne
Działanie urządzenia opiera się na wykorzystaniu specjalnych materiałów funkcjonalnych - są to tzw. materiały termoelektryczne. W przeciwieństwie do Tomasza Seebecka, który użył w swoim eksperymencie zwykłych metali, w nowoczesnych generatorach stosuje się materiały półprzewodnikowe o złożonym składzie chemicznym. Muszą one m.in. zapewniać dużą sprawność i jednocześnie wykazywać się odpornością na wysokie temperatury. Opracowywanie, wytwarzanie i badanie specjalistycznych materiałów termoelektrycznych to domena Laboratorium Badań Termoelektrycznych na Wydziale Inżynierii Materiałowej i Ceramiki.
Zespół z Laboratorium Badań Termoelektrycznych może pochwalić się opracowaniem nowych tworzyw o właściwościach znacznie lepszych od tych, które posiadają materiały komercyjnie dostępne. Nowe elementy termoelektryczne złożone są z kilku odpowiednio dobranych składników. Charakteryzują się one między innymi, przy tych samych co powszechnie dostępne elementy rozmiarach, dwukrotnie lepszą sprawnością i prawie pięciokrotnie wyższą ilością energii, którą mogą wytworzyć.
Odzysk energii odpadowej
Zespół naukowców wiąże ogromne nadzieje z możliwościami odzysku tzw. ciepła odpadowego. Jako cywilizacja wytwarzamy bowiem ogromne ilości energii, a jednocześnie wykorzystujemy ją w sposób bardzo rozrzutny. Duże ilości energii marnuje się np. w pojazdach samochodowych, procesach technologicznych i różnego typu urządzeniach. Sama idea przetwarzania odpadowego ciepła w energię elektryczną jest atrakcyjna m.in. dla biznesu zajmującego się produkcją i dostarczaniem energii.
Generatory termoelektryczne nie są jeszcze na tyle wydajne, aby zastąpić np. przemysłowe generatory w elektrowniach, ale ich zastosowanie np. w samochodach może przynieść znakomite rezultaty. Jak pokazuje bilans energetyczny samochodu, większość silników spalinowych wykorzystuje zaledwie około 40% wytwarzanego ciepła. Na przykład, żeby wytworzyć moc mechaniczną 100 kW potrzebujemy aż 250 kW ciepła uzyskanego ze spalenia paliwa. Pozostałe 150 kW jest tracone i rozpraszane w otoczeniu m.in. przez układ chłodzenia i układ wydechowy samochodu.
Przykładowy bilans energetyczny samochodu. Samochód o mocy mechanicznej 100 kW wytwarza 150 kW ciepła, które nie jest w żaden sposób wykorzystywane.
Żeby lepiej zobrazować jak dużo energii jest tracone, można posłużyć się porównaniem do potrzeb domu jednorodzinnego. Przykładowy mały dom jednorodzinny posiada piec grzewczy o mocy ok. 25 kW. Z powyższych obliczeń wynika, że samochód może tracić do 150 kW ciepła. Odpowiada to potrzebom aż sześciu domów.