Jak człowiek stworzył świat - opowieść o najbardziej niedorzecznej, ale całkiem sensownej teorii w fizyce
Gdyby choć minimalnie zmienić stałe fizyczne rządzące naszym Wszechświatem, nigdy nie rozwinęłoby się w nim życie. A zatem niemożliwe, by owe stałe powstały w wyniku przypadku. To my sami skroiliśmy sobie prawa fizyki tak, by świetnie do nas pasowały. Zrobiliśmy to długo przed naszym powstaniem.
Optymista wierzy, że żyjemy w najlepszym z
możliwych światów, a pesymista obawia się, że to może być prawda. Obaj
mają rację, bo z punktu widzenia praw natury świat wydaje się
zaprojektowany w sposób doskonały. Niewiele można tu poprawić, bo
najmniejsza zmiana prowadziłaby do... eliminacji człowieka.
Nasza planeta krąży wokół Słońca na tyle blisko, by zapewnić przyjemne
ciepło i wodę w stanie ciekłym, i na tyle daleko, by nie zamienić się w
piekło. Gdyby Księżyc znajdował się o jedną piątą bliżej, to przypływy
oceanów na Ziemi byłyby tak wielkie, że całkowicie zatapiałyby lądy.
Takich zbiegów okoliczności (przypadkowych?) jest dużo więcej.
Czy Bóg wygrał nas w kości?
„Naprawdę interesuje mnie, czy Bóg, stwarzając świat, miał jakikolwiek
wybór” – zastanawiał się Albert Einstein. Okazuje się, że zmiana – nawet
o ułamek procentu – w wartościach różnych stałych lub w prawach natury
zaowocowałaby światem pustym lub znikającym w ułamku sekundy, a niemal
na pewno nieprzyjaznym dla życia.
Gdyby na przykład siły jądrowe zespalające w jądrach atomowych protony i
neutrony były odrobinę słabsze, Wszechświat byłby wypełniony jedynie
wodorem. Jądra cięższych pierwiastków nigdy by nie powstały. Ale też
gdyby siły jądrowe były odrobinę silniejsze, to w pierwszych minutach po
Wielkim Wybuchu cały wodór zamieniłby się w hel.
Inny przykład: stała grawitacji jest niezwykle małą liczbą.
Wystarczyłoby, żeby była tylko troszkę większa, a tworzyłyby się gwiazdy
sporo większe od Słońca. Tak duże gwiazdy bardzo szybko się spalają.
Wszystkie umierają w gwałtownym wybuchu supernowej, zmiatając w podmuchu
eksplozji całe swoje otoczenie. Gwiazdy nie byłyby więc bezpiecznym
źródłem energii dla planet.
Z kolei gdyby grawitacja była jednak trochę słabsza, niż jest, to w
ogóle nie tworzyłyby się ciężkie gwiazdy i zmalałaby liczba supernowych.
Tymczasem to właśnie wybuchy supernowych rozsiewają w przestrzeni
międzygwiezdnej pierwiastki cięższe od wodoru i helu, które są potem
budulcem planet i organizmów żywych.
Pierwsze wyjaśnienie wybiega z dziedziny nauki w sferę mistyki, drugie –
w istocie rzeczy nie jest żadnym wyjaśnieniem, tylko złożeniem broni.
Z kolei Lee Smolin rozwiązuje ten problem w ten sam sposób, w jaki nauka
poradziła sobie z zagadką pochodzenia życia i człowieka, którego
przypadkowe powstanie również z pozoru wydaje się niemal
nieprawdopodobne. Smolin podąża śladami Darwina i sugeruje, że
doskonałość kosmosu – podobnie jak zachwycająca doskonałość ziemskiego
życia – jest wynikiem ewolucji i swoistego doboru naturalnego.
- Tak jak biologiczny sukces zwierzęcia liczony jest tym, ile pozostawi
po sobie potomstwa (zdrowsze, silniejsze i sprytniejsze zdołają urodzić i
wychować więcej dzieci), tak samo – twierdzi Smolin – jest w przypadku
wszechświatów. Udane i zdrowe wszechświaty będą miały więcej dzieci,
czyli więcej wszechświatów potomnych.
Wszechświaty mają dzieci
A jak rozmnażają się światy? Kiedy paliwo zasilające gwiazdę wyczerpie
się, zewnętrzna powłoka gwiazdy zostaje odrzucona, a jądro zaczyna się
zapadać. Jeśli początkowa masa gwiazdy była dość duża, powstanie czarna
dziura. Nie wiemy, co się dzieje w jej wnętrzu, ale nasze teorie
dopuszczają możliwość, że zachodzące tam gwałtowne procesy prowadzą do
narodzin nowego wszechświata.
- Wszechświat taki – twierdzi Smolin – będzie dość podobny do swego
rodzica, choć niektóre parametry stałych fizycznych mogą się trochę
zmutować.
Wszechświaty o „nieudanych” prawach fizyki, w których nie powstały jądra
atomowe i nie narodziły się gwiazdy na tyle duże, by przekształcić się w
czarne dziury, umrą szybko i bezpotomnie. Sukces reprodukcyjny odniosą
natomiast kosmosy podobne do naszego – długo żyjące, porządne światy,
których pustkę rozświetlają niezliczone wielkie słońca.
Co ważne, te same prawa fizyki, które pozwalają na powstanie masywnych
gwiazd, stwarzają w układach słonecznych warunki korzystne dla powstania
życia.
Pomijając kwestie natury filozoficznej, od razu rzuca się w oczy słaby
punkt tej teorii. W jaki sposób wszechświaty potomne dziedziczą cechy
(czytaj: parametry stałych fizycznych) po swoich przodkach? Ba, czy w
ogóle dziedziczą?
Wprawdzie Darwin, gdy pisał rozprawę „O pochodzeniu gatunków”, też nie
dysponował szczegółową wiedzą na temat mechanizmów genetyki. Miał jednak
nad Smolinem pewną istotną przewagę: mógł obserwować potomstwo różnych
gatunków. Smolinowi zaś nie będzie dane być świadkiem rozmnażania się
wszechświatów. Nawet jednego. Ma więc słabe podstawy, by przekonywać nas
do teorii ewolucji kosmosu.
Ostateczny cios pomysłowi Smolina zadał niedawno Aleksander Wilenkin,
kosmolog z Tufts University w Massachusetts. Zauważył on, że jeśli
narodziny nowej rzeczywistości następują we wnętrzach czarnych dziur, to
wszechświaty rodzą się nie tylko w dużych czarnych dziurach powstałych
po śmierci gwiazd, ale także w miniaturowych, którymi – zgodnie z teorią
kwantów – wypełniona jest próżnia.
Wilenkin wyliczył, że nasz Wszechświat, wbrew temu, co sugeruje Smolin,
wcale nie jest najwydajniejszą z możliwych fabryką czarnych dziur. Dużo
więcej potomków powstałych właśnie w miniaturowych czarnych dziurach
rodziłyby wszechświaty o większej od naszego wartości stałej
kosmologicznej. I takie właśnie światy – niewielkie, krótko żyjące,
puste i z naszego punktu widzenia nieciekawe – wygrałyby ewolucyjny
wyścig w kosmosie.
Wkracza mechanika kwantowa
To my zmieniliśmy Wszechświat i fizykę (przy okazji) Najbardziej
niezwykłe wyjaśnienie fenomenu naszego doskonale dostrojonego do
biologicznego życia Wszechświata zawdzięczamy mechanice kwantowej. Jest
ono równie szalone i sprzeczne z tradycyjną fizyką, jak sama teoria
kwantów.
Według tej hipotezy świat nie jest ani dziełem jakiejś nadnaturalnej
inteligencji, ani ślepej siły ewolucji. Jest do nas dostosowany
idealnie, bo my sami to sprawiliśmy.
W jaki sposób nasze pojawienie się na Ziemi aż 13,7 miliarda lat po
Wielkim Wybuchu mogło wpłynąć na prawa fizyki oraz wartości ładunków,
mas cząstek i innych stałych fizycznych, które obowiązywały przecież od
samego początku?
– Ano trzeba zapomnieć o tym, że cokolwiek jest ustalone raz na zawsze –
pisze w jednym z ostatnich „New Scientist” australijski fizyk Paul
Davies.
Podobne konsekwencje dotyczą także tego, co działo się po Wielkim
Wybuchu. Dziś szacuje się, że na każdy miliard kwarków i antykwarków
przypadał jeden dodatkowy kwark, dzięki czemu po anihilacji materii i
antymaterii pozostała jakaś materia.
Gdyby po Wielkim Wybuchu przewaga materii nad antymaterią była
minimalnie większa, to pozostałoby więcej materii, a większa masa
Wszechświata szybciej wyhamowałaby jego ekspansję. A powstanie życia
wymaga czasu. Potrzeba miliarda lat, żeby utworzyły się pierwsze
gwiazdy, dalszych pięciu miliardów lat, żeby powstały gwiazdy takie jak
Słońce, a potem jeszcze pięciu miliardów lat, żeby rozwinęło się życie
na planetach.
Jednym słowem, gdyby zestaw stałych fizycznych był tylko odrobinę inny,
to być może powstałyby jakieś światy istniejące dłużej niż ułamek
sekundy, ale niemal na pewno nie byłoby w nich istot, które mogłyby to
potwierdzić.
Amerykański fizyk teoretyk Lee Smolin w książce „Życie Wszechświata”
szacuje, że gdyby Bóg wybierał wszystkie parametry stałych fizycznych na
chybił trafił, to szansa, że wyjdzie mu kosmos, w którym mogłyby
zaistnieć przynajmniej gwiazdy (nie mówiąc o ludziach), wynosi 1:10 229.
Jak to się stało, że mamy takie niewiarygodne wręcz szczęście?
Inteligentny Stwórca czy ślepa ewolucja?
Znalezienie się w najlepszym z możliwych światów jest tak mało
prawdopodobne, że chyba nie możemy składać wszystkiego tylko na uśmiech
losu. Niektórzy upatrują w tym nieskończonej boskiej inteligencji – któż
inny jeśli nie wszechmocny i wszechrozumny Stwórca mógłby dostroić
kosmiczny mechanizm wystarczająco precyzyjnie, tak by powstałe we
Wszechświecie rozumne istoty mogły go chwalić?
Inni twierdzą, że istnieje nieskończona mnogość przeróżnych
wszechświatów o najprzeróżniejszych wartościach stałych fizycznych.
Znakomita większość z nich jest ułomna i nieciekawa – są małe, istnieją
krótko, nie ma w nich gwiazd ani planet.
Jednym z fundamentów mechaniki kwantowej jest zasada nieoznaczoności,
która między innymi mówi, że nie można jednocześnie zmierzyć z
nieskończoną precyzją położenia i prędkości cząstki elementarnej. To
wcale nie jest tak, że cząstka ma jakąś obiektywną prędkość i położenie,
a my nie jesteśmy w stanie ich ustalić, bo jeszcze nie skonstruowaliśmy
dostatecznie dobrych przyrządów pomiarowych.
Po prostu kwantowe prawa mówią, że nasza wiedza nigdy nie będzie pełna.
Zawsze będzie nieco rozmyta. Jeśli superdokładnie zmierzymy położenie
elektronu, to w tym samym momencie wartość jego prędkości będzie
nieustalona. Ta dziwna reguła została potwierdzona do tej pory w
niezliczonych eksperymentach.
A Paul Davies idzie w swoich wnioskach dużo dalej. Sugeruje, że podobne
rozmycie dotyczy samych praw natury. Po Wielkim Wybuchu nie były one raz
na zawsze ustalone. Mogły przybrać taką lub inną postać. I to właśnie
my, ludzie, sprawiliśmy, że koniec końców są one dla nas korzystne.
Zaraz, zaraz, ale czy to oznacza, że mogliśmy jakoś zmienić przeszłość?
Nie inaczej. Ale w mechanice kwantowej to nic dziwnego. By to wyjaśnić,
przypomnijmy teraz jeden z najsławniejszych eksperymentów fizyki, w
którym obserwowano interferencję światła.
Podglądanie przez szczeliny
Jeśli światło przechodzi przez malutki otwór w zaciemnionym pokoju, to
na ekranie za tym otworem zobaczymy plamkę światła – intensywniejszą w
środku, nieco rozmytą na brzegach. Co zobaczymy, jeśli obok siebie będą
dwie dziurki?
Moglibyśmy spodziewać się dwóch rozmytych plamek, ale w rzeczywistości
obraz będzie zupełnie inny – na ekranie powstanie szereg czarno-białych
prążków. Skąd one się biorą?
Światło jest falą elektromagnetyczną, więc obraz na ekranie jest
wynikiem nakładania się (interferencji) fal dobiegających od obu
dziurek. Tam, gdzie grzbiety lub doliny fal się nakładają, następuje
wzmocnienie światła (pojawia się jasny prążek), a tam, gdzie spotyka się
dolina z grzbietem, następuje wygaszenie (ciemność).
Kłopot z taką falową interpretacją zaczyna się wtedy, kiedy zmniejszamy
natężenie światła. Zgodnie z mechaniką kwantową światło to również zbiór
fotonów, czyli maleńkich porcji (kwantów). Co się stanie, jeśli w
kierunku obu dziurek nie będzie leciała cała ich chmara, lecz tylko
jeden jedyny foton?
Na zdrowy rozum powinien on przelecieć tylko jednym z otworów i trafić w
ekran tuż za nim. Nie powinno więc dojść do żadnej interferencji.
Powinniśmy widzieć dwie osobne plamki światła.
Ale eksperyment dowodzi, że nawet jeśli wystrzelimy jeden jedyny foton,
to na ekranie również pojawią się prążki interferencyjne! Foton
przelatuje jakimś sposobem przez dwa otworki naraz i interferuje sam ze
sobą. Ba! Żeby tylko foton! Nawet – zdawałoby się – przyzwoity, całkiem
materialny elektron wyczynia podobne cuda!
Przechytrzyć naturę
Zaintrygowani fizycy postanowili sprawdzić, czy faktycznie cząstki
potrafią się rozdwajać. Przed każdym z otworków ustawili detektor, który
miał pokazywać, którędy przeleci cząstka światła. Wtedy okazało się, że
wprawdzie foton za każdym razem wybiera tylko jeden z otworków, ale też
obraz prążków interferencyjnych na ekranie znikał, a pojawiały się dwie
plamki.
Nasza obserwacja zmieniała więc rzeczywistość. Pod naszym czujnym okiem fotony zmieniały zachowanie.
Naukowcy postanowili przechytrzyć naturę. Ustawili detektory tuż za
otworkami. Foton przecież nie może z góry podejrzewać – zanim doleci do
otworków – że po ich minięciu będzie śledzony. Może więc przeleci dwoma
otworkami naraz i wtedy uda się go złapać na gorącym uczynku, jak maluje
prążki interferencyjne?
Niestety, detektory zawsze wykrywały foton wyłaniający się tylko z
jednej ze szczelin. Nigdy z obu jednocześnie. Ale prążki na ekranie też
się nie pojawiały. Pokazywały się tylko wtedy, kiedy detektory nie
pracowały (były wyłączone), a więc nie wiedzieliśmy, którym z otworków
przelatywały fotony.
Jak się okazuje, nasze obserwacje zmieniają nawet przeszłość. Niewinny
sprawdzian, którym z otworków przeleciały fotony, nawet po tym, kiedy to
już się stało, odwraca skutek całego eksperymentu!
Tę niewiarygodną właściwość naszego świata fizycy ochrzcili mianem
kwantowej postselekcji. Jest zwariowana, przedziwna i sprzeczna ze
zdrowym rozsądkiem, ale potwierdzona eksperymentem.
Paul Davies wraz z Yakirem Aharonovem i Jeffem Tollaksenem pracują teraz
nad ścisłym matematycznym rozpracowaniem podobnego schematu dla
ewolucji naszego Wszechświata i jego praw. Ich zwariowana hipoteza mówi,
że to nasze istnienie i obserwacje tak zmieniły przeszłość kosmosu, że
dziś wygląda on na idealnie dopasowany do ludzi. Podobnie jak włączenie
detektora zmieniło obraz, jaki dało światło po prześlizgnięciu się przez
otworki.
Jednym słowem, nasze istnienie miało sprawić, że z nieogarnionej liczby
możliwości rozwoju i cech nasz Wszechświat przybrał właśnie takie, w
których teraz żyjemy
źródło: My21 - Tygodnik Internetowy
opublikowano: 2012-08-10
Komentarze
Ostatnie:
14.08.2014 19:41
Dodał(a): ~Morski
Mam takie pytanko kto przeczytał ten artykuł w całości? Ja dotarłem tylko do kwantowej. A wy?